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Abstract

The recent availability of next-generation sequencing (NGS) has made possible the

use of dense genetic markers to identify regions of the genome that may be under the

influence of selection. Several statistical methods have been developed recently for this

purpose. Here, we present the results of an individual-based simulation study investi-

gating the power and error rate of popular or recent genome scan methods: linear

regression, Bayescan, BayEnv and LFMM. Contrary to previous studies, we focus on

complex, hierarchical population structure and on polygenic selection. Additionally,

we use a false discovery rate (FDR)-based framework, which provides an unified test-

ing framework across frequentist and Bayesian methods. Finally, we investigate the

influence of population allele frequencies versus individual genotype data specification

for LFMM and the linear regression. The relative ranking between the methods is

impacted by the consideration of polygenic selection, compared to a monogenic sce-

nario. For strongly hierarchical scenarios with confounding effects between demogra-

phy and environmental variables, the power of the methods can be very low. Except

for one scenario, Bayescan exhibited moderate power and error rate. BayEnv perfor-

mance was good under nonhierarchical scenarios, while LFMM provided the best com-

promise between power and error rate across scenarios. We found that it is possible to

greatly reduce error rates by considering the results of all three methods when identi-

fying outlier loci.
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Introduction

The detection of signatures of selection has been a long-

standing interest of population geneticists and evolu-

tionary biologists. However, until recently, the paucity

of molecular markers available limited the power of sta-

tistical methods to detect selection because other biolog-

ical processes such as structure and migration have

confounding effects on polymorphism and linkage dis-

equilibrium. This situation has changed radically with

the advent of next-generation sequencing (NGS, see

Shendure & Ji 2008), which can generate dense arrays

of markers, typically single-nucleotide polymorphisms

(SNPs), spread across the genome. These new data can

be used to distinguish between neutral processes that

have a genome-wide effect (e.g. demographic history)

and processes that have a local effect, particularly selec-

tion (Luikart et al. 2003). Several so-called genome scan

methods have been developed for this purpose

(reviewed in De Mita et al. 2013).

One of the most popular types of methods is based

on an idea first proposed by Lewontin & Krakauer

(1973). The underlying rationale is that loci influenced

by directional selection will show larger genetic differ-

entiation than neutral loci, while the opposite is true for
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loci subject to balancing selection. Thus, loci that exhibit

unusually high or low FST are good candidates for

being influenced by selection. Several variants of this

test exist (e.g. Beaumont & Nichols 1996; Vitalis et al.

2001; Beaumont & Balding 2004; Foll & Gaggiotti 2008)

and have been frequently applied to nonmodel species.

Another recent group of genome scan methods is based

on the idea that many selected loci should be correlated

with the environmental factors underlying the selective

pressure (Joost et al. 2007; Coop et al. 2010; Frichot et al.

2013). Genotype–environment association methods iden-

tify loci that show strong correlations with one or more

environmental variables, and those loci are interpreted

as potentially under selection.

All genome scan methods are based on the premise

that it is possible to clearly distinguish between the

genetic signals left by neutral and non-neutral pro-

cesses. However, this assumption is frequently violated

in real-life scenarios (Hermisson 2009). Several demo-

graphic processes such as allele surfing (Edmonds et al.

2004) and bottlenecks can leave signatures that mimic

those left by positive selection. Moreover, complex spa-

tial structuring can increase the variance of genetic

parameters across the genome leading to high false-

positive rates (Excoffier et al. 2009). Sensitivity analyses

published thus far (P�erez-Figueroa et al. 2010; De Mita

et al. 2013) focus on these confounding effects of

demographic covariance among populations arising

through migration. The overall pattern that emerges

from these studies is rather positive. Although all eval-

uated methods suffer from either low power (differenti-

ation-based methods) or high false-positive rates

(genotype–environment association methods), a strategy

based on the use of both types of methods seems to

lead to reliable identification of outlier loci. Never-

theless, one limit of existing studies is that they

consider the effect of selection on a single locus. This is a

quite unjustified assumption because selection for a spe-

cific quantitative phenotypic trait will influence several

regions across the genome (Rockman 2012). There are

only two studies (Narum & Hess 2011; Vilas et al. 2012)

that consider several selected loci. However, the first is

limited by both the number of loci (only 5) and the num-

ber of replicates of the simulated data, while the second

focuses on the question of whether or not detected

outlier markers are physically close to selected loci.

In this study, we focus attention on more realistic sce-

narios than those considered in previous analyses. In

particular, we investigate biases that may arise when

selection acts upon traits determined by several genes.

Indeed, as Rockman (2012) recently pointed out, there

is a paucity of empirical and theoretical support for the

abundance of large-effect quantitative trait nucleotides

(QTNs) in the wild. Instead, it is likely that ‘alleles that

matter for evolution’ are numerous small-effect loci. It

is unclear whether current genome scan methods will

simply have low power or whether they will also have

a high false discovery rate when applied to these situa-

tions. Another important consideration about real popu-

lations and species is that they are unlikely to be at

migration–drift equilibrium. Thus, we evaluate scenar-

ios where they have experienced recent divergence

from an ancestral population, a process that may also

affect power and false discovery rates of existing meth-

ods.

Instead of evaluating the performance of a very large

number of methods, we focus on a few that have pro-

ven popular or that are very recent and tested only

under some restricted scenarios. More precisely, we

focus on two genotype–environment association Bayes-

ian methods that explicitly take into account the covari-

ance of allele frequencies across populations (Coop

et al. 2010; Frichot et al. 2013) and we compare these

methods to one of the most frequently used genome

scan methods based on population differentiation (Foll

& Gaggiotti 2008). We did not include more population

differentiation methods as they have been shown to be

less efficient than this particular one (P�erez-Figueroa

et al. 2010; Vilas et al. 2012; De Mita et al. 2013). We fur-

ther consider a naive frequentist regression approach

without any correction for population structure. The

comparison is made using a rigorous statistical frame-

work based on false discovery rates (FDRs, see Benja-

mini & Hochberg 1995) and q-values (Storey &

Tibshirani 2003; Storey et al. 2004), which allow for a

unified comparison of the performance of the methods.

Material and methods

Simulation model

We carried out simulations using the SimuPop package

for Python (Peng & Kimmel 2005). We focused on

highly structured population scenarios where selection

acts on a multigenic trait. For the sake of clarity, we

describe each component of the simulation model sepa-

rately and also present the main attributes of each sce-

nario in Table 1. We simulated 100 replicates for each

scenarios (but only used 50 for Bayescan, see below).

Demographic process. Our main scenario is a dichoto-

mous process of population fission in which an ances-

tral population of 500 individuals gives birth to two

descendant populations after 50 generations of drift.

The fission is instantaneous with local populations

reaching carrying capacity of 500 individuals in a single

generation. This dichotomous fission process is repeated

until 16 populations are obtained (see dendrogram,
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Fig. 1a). Migration occurs all along the process and

preferentially between historically close populations:

two populations issued from the same fission event will

exchange twice as many migrants as two populations

issued from two distinct fission events. In other words,

the proportion of migrants between two populations is

determined by phylogeographical distance. We aimed

at capturing the main features of a spatial expansion in

a heterogeneous habitat, for example a postglaciation

colonization scenario, where new valleys and subvalleys

are progressively reached. The further apart two popu-

lations are along the population tree, the lower the

migration rate between them. This model corresponds

to a highly structured isolation with migration model

(noted HsIMM). We assume a recent demographic ori-

gin for all populations (500 generations in total since

the initial fission event). In addition, we consider two

simpler scenarios: an isolation with migration (IMM)

model where the sixteen populations are issued from a

single fission event and a stepping-stone scenario (SS)

where all sixteen populations are issued from a single

fission event. For these two models, the length of the

runs was 400 generations. These settings allow us to

stop the simulation at a near-equilibrium situation. In

all scenarios, each population consists of 500 individu-

als. The proportion of individuals in a local population

that do not migrate, (1�m) is the same under all three

scenarios but the proportion of individuals that migrate

between pairs of populations differ. Under the HsIMM,

it is m/2(i+1) where i is the number of fission events

between each local population and the most recent

common ancestral population (eqn 1, Supporting infor-

mation). Under the IMM, it is m/15 for all pair of popu-

lations (eqn 2, Supporting information). Under the SS

model, it is equal to m/2 for neighbouring populations

and zero for all other pairs of populations (eqn 3,

Supporting information). For all simulations, we chose

m = 0.0045, which yielded pairwise FST approximately

equal to 0.1.

More information about the simulation process can

be found in the Supporting information (section 1). The

python code used can also be found online in the data

accessibility section.

Genetic process. We simulated 5000 SNP regularly

spread along 10 chromosomes. The recombination rate

between adjacent pairs of SNPs is set to 0.002 in order

to have, on average, one recombination event per popu-

lation per generation. This amounts to spacing 500

SNPs uniformly along each chromosome. The mutation

rate is set to 10�7 per generation at each SNP. We con-

sider two genetic architectures: either a single-locus

case, or 50, randomly distributed, loci influencing a

phenotypic trait directly linked to fitness. In each case,

we assume codominance.

We use a multiplicative fitness function to describe

the ‘cumulative’ effect of all loci on fitness:

W ¼ ð1þ sPÞn11ð1� sPÞn00 eqn 1

where sP is the local coefficient of selection (depending

on the local value of the environment, see next para-

graph) and n11 and n00 are the number of (1,1) and (0,0)

Table 1 Description of the scenarios considered in this study

Scenario Spatial model Demographic history Selection pattern

HsIMM-U Hierarchical Multiple binary fissions Correlated with demographic history

HsIMM-C Hierarchical Multiple binary fissions Environmental gradient

IMM Standard IMM Instantaneous fission Environmental gradient

SS Stepping-stone Instantaneous fission Environmental gradient

(A) (B) (C)

Fig. 1 Heatmap of allele frequencies correlation between all simulated 16 populations. Panel A: HsIMM model; Panel B: IMM model;

Panel C: SS model. The red to white gradient corresponds to the [�1,1] interval. The dendrogram illustrates proximity between

populations (inferred for HsIMM, drawn for IMM and SS).
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homozygous loci, respectively. Note that fitness is nor-

malized such that the relative fitness of any heterozy-

gous locus is 1. For small s, this multiplicative fitness

function is equivalent to an additive one.

Environmental variable underlying the selective pressure. In

the case of a highly structured model (HsIMM), we con-

sider two spatial patterns of selection intensities, which

are determined by an environmental variable ES: (i) at

each population fission, the values of ES for each

descendant population are drawn from a uniform dis-

tribution centred on the value of the ancestral popula-

tion (HsIMM-U) and, (ii) at each population fission, the

values of ES for the new populations are set such that

they produce an environmental gradient along a linear

habitat (HsIMM-C). For the isolation with migration

(IMM) and stepping-stone (SS) scenarios, the values of

ES are also set to form an environmental gradient, like

in case (ii) (Table 1).

The local coefficient of selection sP is calculated as a

logistic transformation of the environmental variable:

sP ¼ s
1� e�bES

1þ e�bES
eqn 2

where s is the ‘baseline’ selection coefficient and b is

the ‘slope’ of the logistic transformation. For the sce-

nario with a single selected locus, we set s to 0.1 and b
to 1. In the case of the polygenic scenario, we use

s = 0.004 and b = 5. The difference in parameter values

between the two scenarios is necessary because, for size

effect s in the monogenic case and s/N in the polygenic

case, local adaptation progresses much more slowly

under the polygenic architecture. Therefore, it was nec-

essary to increase both the effect size and slope of the

gradient for the polygenic case so as to generate local

adaptation patterns under both scenarios in a similar

evolutionary time. The values were scaled so that the

mean allelic frequency pattern in the polygenic case

was similar to the one in the monogenic case.

We also investigate the potential for spurious selec-

tion signals due to the consideration of environmental

factors unrelated to any selective pressure. For this, we

consider scenarios that include a selectively neutral

environmental variable E0 whose values are randomly

drawn from a normal distribution. Selection starts at

the second fission events in the HsIM scenarios and at

the (only) first one in the two other scenarios.

Statistical analysis

Error rate. For all methods, we use q-values as a signifi-

cance test statistic (Storey & Tibshirani 2003; Storey

et al. 2004). The q-value is tightly linked to the false

discovery rate (FDR; Storey & Tibshirani 2003). For a

statistical test, the FDR is equal to the number of false

positives over the total number of positives (true and

false). Thus, it is the proportion of ‘false discoveries’

among all the ‘discoveries’ of the test. If the assump-

tions of the test hold, then a given threshold aq for

assessing the significance of q-values should lead to a

FDR of aq. For example, if one decides a cut-off thresh-

old of 5%, then the test will yield 95% of true positives

and 5% of false positives. Note that, in this sense, a cut-

off of 5% for q-values is much more stringent than the

same cut-off for P-values. It is important to distinguish

between false-positive rate, false discovery rate and

power: their relationship is explained further in ‘Sup-

porting information’. Note that, for the same data set,

an increase in power would lead to a decrease in FDR,

whereas an increase in false-positive rate (FPR) would

lead to an increase in the FDR.

Power. For monogenic selection scenarios, the definition

of power is straightforward: it is the proportion of truly

selected loci that are significant (see also eqn 6 in

Supporting information). For polygenic selection, this

definition leads to a value of power for each locus. We

computed power for each locus for each simulation and

then averaged over all loci, in order to get a mean

power comparable to the case of monogenic scenarios.

Note that, in the case of polygenic scenarios, we have

less sampling error than in monogenic scenarios,

because we have 50 times more selected loci.

Data specification. Some methods can be applied either

to population allele frequency data or to individual

genotype data. In principle, using genotypic data is

more appropriate when it is difficult to clearly define

population boundaries. It can also avoid potential

biases introduced by differences in sample sizes across

populations. We investigated the influence of data spec-

ification for the linear regression and the latent factor

mixed model methods (see below).

Genome scan methods to detect selection

There are several genome scan methods aiming at

detecting selection by identifying outlier loci. Here, we

focus on two genotype–environment association meth-

ods that explicitly take into account the allele frequency

covariance across populations and we compare these

methods to a genome scan method based on population

differentiation. We further consider a naive frequentist

approach that tests for correlations between allele fre-

quencies and environmental factors.

BayEnv. A first method that takes into account the allele

frequency covariance across populations generated by

© 2014 John Wiley & Sons Ltd
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demographic history and spatial effects was developed

by Coop et al. (2010) and is implemented in the soft-

ware BayEnv. This method consists in a two-step proce-

dure. First, a model using all loci (or a part of the data

set that is known to be neutral) estimates the popula-

tion structure using a variance–covariance matrix of

allele frequencies between populations. Second, a model

incorporating the empirical covariance matrix tests for

the correlation between the allele frequencies at each

locus (or only at loci of interest) and each environmen-

tal variable. The software returns Bayes factors weight-

ing the strength of evidence in favour of a correlation

between allele frequencies and the environmental vari-

able. We transform the Bayes factors into posterior odds

using a prior probability of the null model p0 = 0.99,

and use these odds to compute q-values (Storey & Tib-

shirani 2003; Storey et al. 2004) which are used to assess

the significance of each locus. The procedure is

explained in the Supporting information, where we also

provide the MCMC parameters used.

Latent factor mixed model. Latent factor mixed models

(LFMMs, see Frichot et al. 2013) are very general and

flexible models and provide an alternative approach to

detect relationships between allele frequencies and envi-

ronmental values, while taking into account population

structure. The model can be seen as an approximate

principal component analysis combined with a regres-

sion. It is computationally faster than BayEnv and Baye-

scan (Frichot et al. 2013). The K value (number of factors)

needed by the software is estimated to be 15 for every

scenarios, using Tracey–Widom tests. The P-values

returned by the method are transformed into q-values

following a standard procedure (Storey & Tibshirani

2003). We used the version 1.2 of the software.

Bayescan. Bayescan (Foll & Gaggiotti 2008) is an FST-

based model (Beaumont & Balding 2004). This method

is not searching for a potential correlation between

allele frequencies and the environment. Instead, it is

searching for loci exhibiting extreme FST values. Large

FSTs are then interpreted as signatures of local adapta-

tion. It is testing for outliers independently of any envi-

ronmental knowledge. The statistical significance is

assessed by the use of q-values (Storey & Tibshirani

2003; Storey et al. 2004) using a prior odds of 100. The

MCMC parameters used are detailed in Supporting

information. Because of computation time issues, we

only used 50 replicates for this method.

Allele frequencies–environment regression. This is the most

naive method and only aims at detecting a correlation

between population allele frequencies and an environ-

mental variable. Typically, significance is evaluated

using the P-value returned by Student’s test on the

slope of the regression. However, to correct for multiple

tests and to easily compare with results of other meth-

ods, we transform the P-values into q-values using the

method presented in Storey & Tibshirani (2003).

Results

Genetic structure produced by the population models

As expected, our simulation models produce highly

structured population genetic data. Figure 1 shows the

structure of the correlation in allele frequencies across

populations, as estimated by the software BayEnv

(Coop et al. 2010). For the binary fission model

(Fig. 1A), the strength of the correlation decreases with

the phylogeographical distance. The isolation with

migration model (Fig. 1B) produces no apparent spatial

pattern, while the stepping-stone model (Fig. 1C) leads

to a typical isolation-by-distance pattern.

Monogenic selection

Error rates. The expectation is that the false discovery

rate (FDR) increases linearly with the threshold used to

decide the significance of q-values. However, the results

differ radically from this expectation. Indeed, the FDR

of all methods was higher than expected under all sce-

narios (Fig. 2), except for LFMM in the IMM scenario,

which is even quite conservative. Note also that BayEnv

has an acceptable FDR for the SS scenario and stringent

thresholds (Fig. 2, SS). This inflation in FDR is partly

due to the fact that, when only one locus is truly

selected, even a small false-positive rate, when com-

bined with high power, leads to very high FDRs.

Regarding hierarchical scenarios, when the spatial selec-

tion pattern is a function of phylogeographical distance

(Fig. 2, HsIMM-U), FDRs are highest for Bayescan and

lowest for LFMM, while the FDR values for BayEnv

and the linear regression methods are intermediate.

When selection is a function of an environmental gradi-

ent (Fig. 2, HsIMM-C), the FDR is highest for the linear

regression method, intermediate for Bayescan and low-

est for BayEnv and LFMM. Thus, the spatial pattern in

selection intensities greatly influences the relative per-

formance of the different methods. Note that the indi-

vidual genotype data specification for the linear

regression and LFMM (light lines) always leads to

higher FDRs. This is especially the case for the linear

regression with FDRs of almost 1. Note also that the

linear regression method yields intermediate FDRs for

small aq thresholds for both scenarios. Finally, recall that

FDRs are not on the same scale as false-positive rates

(FPR). Because here we are considering a monogenic

© 2014 John Wiley & Sons Ltd
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scenario, a FDR of 75% corresponds to the truly selected

locus plus 3 false positives, thus to a FPR of 0.06%.

Statistical power. Under the scenario HsIMM-U, the

power of all methods is moderate with a maximum

between 75% and 80% for very permissive thresholds

(Fig. 3, HsIMM-U, except the case of linear regression

for individual genotype data specification, light red

line). In this case, all recent methods had approximately

similar power, although LFMM yields a lower one. The

regression method has the lowest power for allele fre-

quency data specification but the highest one when

using individual genotypes. Under the other scenarios

(Fig. 3, HsIMM-C, IMM and SS), the power of all

methods is very high, being perfect for some of them

regardless of the threshold value used. Note that, in all

cases, the regression model is always among the least

powerful methods. Also, whereas the ‘individual geno-

types’ specification always increases the power for the

regression (light red lines in Fig. 3), this is not always

the case for LFMM (light green lines).

Polygenic selection

Error rates. As it was the case for the monogenic selec-

tion scenario, the false-positive rate of all methods under

all scenarios was higher than expected. Figure 4 shows

that the expected linear increase in FDR with increasing
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Fig. 2 False discovery rate against significance threshold (aq) for monogenic selection. Black line: expected relationship between FDR

and aq. Lines are LOESS smooth for linear regression (plain red line), latent factor mixed model (LFMM, green dot-dashed line),

Bayescan (blue dashed line) and BayEnv (orange two-dashed line). Light lines are for individual genotype data specification for the

linear regression (light red) and LFMM (light green).

© 2014 John Wiley & Sons Ltd

GENOME SCAN METHODS AGAINST MORE COMPLEX MODELS 2011



threshold values only holds for BayEnv under the

stepping-stone model (Fig. 4, SS). Interestingly, LFMM

shows a very conservative pattern for the IMM scenario,

when using the population frequency data specification

(Fig. 4, IMM, dark green line). All other combinations of

scenarios and methods are more error prone than our

theoretical expectation. Note in particular that all meth-

ods have very high FDR under the hierarchically struc-

tured IMM scenarios. While LFMM is the most

conservative method in the case of environment corre-

lated with demography (Fig. 4, HsIMM-U), BayEnv and

Bayescan are the approaches that are the least error

prone for a clinal environment (Fig. 4, HsIMM-C). The

behaviour of LFMM and BayEnv changes radically

across scenarios and they seem specially well adapted to

a specific scenario (IMM and SS, respectively), while

the error rate of Bayescan is more intermediate across

the different scenarios, although it is one of the worst

under the standard IMM model. Regarding data

specification, LFMM seems to be quite robust to its influ-

ence, although the individual specification still tends to

yield more erroneous results than its allele frequency

counterpart. The linear regression model, however, is

much less robust: its individual genotype specification

version is always the most error prone, while its popula-

tion allele frequencies specification can yield relatively

conservative results (e.g. see Fig. 4, IMM).

Statistical power. Because of the small-effect size of each

locus under the polygenic model, the power of all
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Fig. 3 Statistical power against significance threshold for monogenic selection. Lines are linear regression (plain red line), latent factor

mixed model (LFMM, green dot-dashed line), Bayescan (blue dashed line) and BayEnv (orange two-dashed line). Light lines are for

individual genotype data specification for the linear regression (light red) and LFMM (light green).
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methods should be lower than under the single-gene

model. Indeed, we do observe an overall decrease in

power for all scenarios (Fig. 5 compared to Fig. 3). The

linear regression is the method that had the highest

power under scenarios HsIMM-U, HsIMM-C. This

power performance is followed by LFMM (Fig. 5

HsIMM-U and HsIMM-C). These two methods are com-

parable for the SS scenario (Fig. 5). Regarding these

three models (HsIMM-U, HsIMM-C and SS), Bayescan

shows intermediate power and BayEnv is the least

powerful method. Interestingly, the behaviour of the

methods is very different for the IMM scenario (Fig. 5):

here, BayEnv is one of the most powerful methods, only

outperformed by the error-prone linear regression in its

individual genotype specification. LFMM and Bayescan

are the two worst methods.

While having a high power is an interesting feature,

it needs to coincide with reasonable false-positive and

false discovery rates to be relevant. Power against

false-positive (ROC curves) and false discovery rates

are provided in Supporting information. The ROC

curves (Fig. IV in Supporting information) illustrate the

compromise between the number of true and false

positives and show that all methods are comparable in

this regard. The ‘power against FDR’ graphs (Fig. VII

in Supporting information) provide information about
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Fig. 4 False discovery rate against significance threshold (aq) for polygenic scenarios. Black line: expected relationship between FDR

and threshold value aq. Lines are LOESS smooth for linear regression (plain red line), latent factor mixed model (LFMM, green dot-

dashed line), Bayescan (blue dashed line) and BayEnv (orange two-dashed line). Light lines are for individual genotype data specifi-

cation for the linear regression (light red) and LFMM (light green).
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how many true positives are detected by the methods.

For a given FDR, more power means more true (and

false) positives.

Consistency between methods. Overall, the methods tend

to disagree from each other, in terms of which loci

should be considered as selected (true or false posi-

tives). The percentage of overlap between loci consid-

ered as positives by two different methods is around

1–5%, except for the regression and LFMM (14–48%

depending on the scenarios). Notable exceptions are the

HsIMM scenarios, where Bayescan and LFMM reach an

agreement on 13% of loci under selection for HsIMM-U

and 18% for HsIMM-C. Still, the methods are more

often in agreement regarding true positives than regard-

ing false positives. This means that using three methods

to assess the outlier behaviour of loci leads to a sub-

stantial decrease in the FDR. This decrease varies

between 0.4 and 0.65, depending on the scenarios. For

the IMM model, this strategy yields a FDR of 0% (all

positives are true positives). Unfortunately, using sev-

eral methods leads to a decrease in power of approxi-

mately the same magnitude as the decrease in FDR

(between 0.25 and 0.55).

Spurious environmental variable. Methods that use envi-

ronmental variables to identify outliers assume that the

chosen variables exert a selective pressure or are highly
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Fig. 5 Statistical power against significance threshold for polygenic selection. Lines are for linear regression (plain red line), latent

factor mixed model (LFMM, green dot-dashed line), Bayescan (blue dashed line) and BayEnv (orange two-dashed line). Light lines

are for individual genotype data specification for the linear regression (light red) and LFMM (light green).
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correlated with the one directly involved. One possible

outcome in this situation is that the statistical tests iden-

tify a truly selected locus, but assign it to the wrong

environmental variable. Although detecting a locus

under selection is desirable, one does not want to link it

to a spurious environmental variable. We call this error

rate ‘spurious power’ and define it as the proportion of

truly selected loci considered as positive using a spuri-

ous, unrelated environmental variable. Figure 6 shows

that for HsIMM scenarios, the linear regression and

BayEnv methods do not differ much in their ‘spurious

power’ (here, we only focus on the polygenic selection

case). However, LFMM has a very low spurious power.

For the IMM scenario, BayEnv is the most prone to

erroneous choice of selective variable. By contrast, the

linear regression is the most prone to error for the SS

scenario.

Note that, in principle, the spurious power should be

equal to the overall false-positive rate (FPR), because

we expect no association between the spurious environ-

mental variable and the selected loci. This is approxi-

mately the case for all methods, except for LFMM in

the scenarios IMM and SS. It tends to detect (false)

association for selected loci more often than for nons-

elected loci (see Fig. VIII in Supporting information,

note that the scale on these graphs is totally different

from Fig. 6, because the methods differ in their false-

positive rate).

HsIMM−U

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75
Alpha threshold

S
pu

rio
us

 p
ow

er

HsIMM−C

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75
Alpha threshold

S
pu

rio
us

 p
ow

er

IMM

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75
Alpha threshold

S
pu

rio
us

 p
ow

er

SS

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75
Alpha threshold

S
pu

rio
us

 p
ow

er

Regression

LFMM

Fig. 6 Spurious ‘power’ (i.e. power to detect selected loci using an independent spurious variable) against significance threshold for

the null environmental variable. Lines are for linear regression (plain red line), latent factor mixed model (LFMM, green dot-dashed

line) and BayEnv (orange two-dashed line). Light lines are for individual genotype data specification for the linear regression (light

red) and LFMM (light green).
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Discussion

Performances of the methods against difficult scenarios

This study aimed at assessing the performance of recent

and/or popular genome scan methods, in terms of

power and error rate, when applied to difficult scenar-

ios. The relative ranking of the methods, for the poly-

genic case, is summarized in Table 2. Note that the

relationship in ranking between the FDR and the FPR is

strong. Therefore, the methods have an inflated FDR

mainly because of too many false positives, not because

of too few true positives.

The most important challenge to the performance of

all methods is the polygenic selection process. Obvi-

ously, one would expect an overall decrease in power

for all methods when using a polygenic selection model

compared to a monogenic one, something that was

actually observed. This decrease in power went hand in

hand with an overall decrease in FDR (mostly due to

the increased number of selected loci, see eqn 7 in

Supporting information). However, the impact on per-

formance differed among methods leading to a radical

change in their ranking in terms of power/FDR. While

all methods performed approximately equally in the

monogenic scenarios – especially regarding power, for

polygenic scenarios we observed large differences. First,

the regression method became one of the most powerful

but also most error-prone methods. Second, the relative

ranking between Bayescan, BayEnv and LFMM was

changed, in terms of both power and error rate.

The second most important challenge was a strongly

hierarchical spatial structure. This is evident when com-

paring the results for scenarios HsIMM-C and SS, both

of which consider selection along an environmental gra-

dient: the HsIMM-C scenario led to lower power for all

methods. Note that the FDR for BayEnv was also

inflated in the HsIMM-C scenario, whereas it was

almost perfect in the SS scenario. Apart from these

overall changes in behaviour, the ranking of the method

was conserved between the two spatial scenarios

(although LFMM and the linear regression tend to be

alike under the SS scenario).

The last challenge under study was the correlation

between the environmental variable underlying the selec-

tive pressure and demographic history. The effects of this

process can be visualized by comparing scenarios

HsIMM-U and HsIMM-C, which only differ in this par-

ticular aspect. Overall, we see that a correlation between

environment and demography led to low power for all

methods, and higher FDR for Bayescan and BayEnv,

which became even more prone to error than LFMM. The

ranking, in terms of power, of the methods was con-

served between the two kinds of scenarios.

Another source of error to be considered in the case

of association methods (e.g. the regression, LFMM and

BayEnv) is that of associating the selected loci with a

nonselective (spurious) environmental variable. In this

case, BayEnv and the linear regression methods yielded

a stronger ‘spurious power’ than LFMM. Also, LFMM

tended to associate the spurious variable with the

selected loci more often than with the neutral loci.

We finally investigated the influence of the data spec-

ification (population allele frequencies or individual

genotypes) for the linear regression and LFMM meth-

ods. The population allele frequencies data specification

allowed for better performance in terms of error rate

and most of the time in terms of power, at least under

our simulated scenarios. This can be due to the fact that

using genotypic data involved a larger sample size,

which led to a higher rate of null model rejection due

to slight violations of its underlying neutral hypotheses

(higher power, but higher error rate). Note that, for

polygenic selection, LFMM was less sensitive to the

data specification. More puzzling, the genotypes specifi-

cation sometimes led to a lower power.

Characteristics of the methods and comparison to
previous studies

Overall, we see that methods using an environmental var-

iable have generally more power than genome-only-based

Table 2 Summary of the properties of each genome scan

methods, under the different scenarios focusing on the poly-

genic case

Regression BayEnv LFMM Bayescan

HsIMM-U

FDR ** ** **** *

FPR * *** **** **

Power **** * *** **

HsIMM-C

FDR * **** ** **

FPR * **** ** ***

Power **** * *** **

IMM

FDR *** ** **** *

FPR *** * **** **

Power *** **** * **

SS

FDR * **** * ***

FPR * **** * ***

Power *** * **** **

FDR, false discovery rate; FPR, false-positive rate. Methods are

ranked from the best (****) to the worst (*). All properties are

compared against the aq thresholds below 0.05. When the rank-

ing of the method was ambivalent, they were both assigned

the same rank.
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methods. Notably, Bayescan was always less powerful

than at least one of the other methods. This is expected,

because the method is not taking advantage of as

much information as the others. One has to note, how-

ever, that sometimes it may not be possible to identify

the environmental variable that should be considered,

in which case a ‘blind’ genome scan method must be

used. Although Bayescan has been shown to perform

quite well under island and stepping-stone scenarios

(Foll & Gaggiotti 2008; Narum & Hess 2011; Vilas et al.

2012; De Mita et al. 2013), it did not perform very well

under our isolation with migration (IMM) model and

polygenic selection. This is a potentially common sce-

nario so the results of our study differ from those of

previous ones in that they suggest caution when using

FST-based genome scans. Note, however, that the low

power under the IMM scenario was only severe for the

polygenic case.

Regarding LFMM and BayEnv, the two methods have

much in common: both approaches employ mixed mod-

els in which environmental variables are introduced as

fixed effects, whereas population structure is introduced

using unobserved variables or hidden factors. Yet, there

are two main differences between the two methods.

First, whereas BayEnv is a two-step procedure, estimat-

ing first the covariance structure of the population allele

frequencies, and only then testing for association with

an environmental variable, LFMM uses hidden factors

to capture the part of genetic variation that cannot be

explained by the set of measured environmental vari-

ables, all at once. This variation could include unknown

demographic history, IBD patterns or environmental

gradients not accounted for in the study. Second, the

PCA-related nature of LFMM would a priori allow the

method to take into account more complex scenarios. In

particular, BayEnv has already been shown to perform

poorly when confronted to hierarchical structure, and

perform quite well in an island model (De Mita et al.

2013). In our study, on the other hand, we also included

LFMM and observed that this method overcorrected

under the low-structure IMM scenario, leading to a

very low FDR, but also a lower power.

Because the regression is not correcting for any popu-

lation structure, we would expect it to yield more false

positives, most likely accompanied by higher power.

The regression is indeed the most error-prone method

for all scenarios, except for the IMM one (which is the

least structured scenario). Note that, when increasing

the number of selected loci (i.e. from the monogenic to

the polygenic case), the compromise between false posi-

tives and power gets better for the regression model

(see Figs III and IV, Supporting information). This could

be caused by the fact that the regression is a more sen-

sitive method, which is less ’reluctant’ to identify loci

as selected. Thus, when many loci are selected, each

with a small effect, we can expect this method to yield

better power.

The results of this study differ from the previous

ones (e.g. P�erez-Figueroa et al. 2010; Narum & Hess

2011; Vilas et al. 2012; De Mita et al. 2013) in several

aspects. First, we used the same metric (the q-value) for

all methods, which allows for a fair comparison. Sec-

ond, while other studies investigated polygenic selec-

tion (Narum & Hess 2011; Vilas et al. 2012), they only

considered up to 10 loci and only investigated FST-

based methods. Third, we used more complex models

with strong hierarchical structure.

General issues and properties of genome scan methods

The results about polygenic selection tell us that assess-

ing methods for monogenic scenarios only is not suffi-

cient, especially because we expect the polygenic case

to be the norm rather than the exception in natura (Prit-

chard & Di Rienzo 2010). Of course, we have assumed

a model of small locus effects, which could be one of

the most difficult for genome scan methods. All meth-

ods may perform better under an L-shaped distribution

of locus effects (see an example in Kulwal et al. 2003),

where a few loci have strong effects among numerous

small-effect loci. Yet, although there is evidence for the

L-shaped architecture in the context of local adaptation

(Yeaman & Whitlock 2011), there is also evidence that

some phenotypic traits are under the control of many

small-effect loci (reviewed in Stranger et al. 2011; Rock-

man 2012).

Another important issue concerns methods that can

consider both population- and individual-level data. In

principle, one expect that individual-based data (geno-

types) should lead to better performance; however, this

is not necessarily the case. The type of data used has a

large effect on the rate of false positives and conse-

quently the FDR. We here illustrated this fact using

LFMM and the linear regression models. Although we

did not test it for BayEnv because the current imple-

mentation does not allow it, the results should be simi-

lar. This result is due to the simple fact that using the

individual genotypes instead of allele frequencies (by

frequencies here, we mean allele count data) increases

the number of observations. This has the desirable

property of increasing the power, but also leads to the

undesirable increase in number of false positives,

because the null models are essentially false. Indeed, no

model is a perfect description of the data; there will

always be a discrepancy with the underlying processes

that lead to the data (because of nonlinearity of effects,

small differences between the potentially assumed and

real demographic history, nonuniform mutation rates,
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etc.) and increasing the number of observations leads to

the rejection of the null model for most loci instead of

only the outlier ones (c.f. Raftery 1995). Using popula-

tion frequencies instead of genotypes is then a more

conservative method. Yet it is not always possible to

use frequencies, because of nonhomogeneous sample

sizes, pooled sampling or the use of dominant data (e.g.

AFLP). In those cases, one has to be aware that the sta-

tistical methods are not that robust to departures from

the underlying model, and the more observation points

there are, the higher is the overall false-positive rate

(Raftery 1995). Note that this is true for the total num-

ber of sampled individuals and the way they are imple-

mented in the models, but not for the number of loci,

which does not a priori increase the false-positive rate.

Finally high FDR, especially in the case of monogenic

selection, corresponds to an acceptable (although still

inflated) false-positive rate (FPR). For example, a FDR

of 75% for the monogenic case corresponds to a FPR of

6.10�4 (see eqn 4 in Supporting information). For the

polygenic case though, and assuming a power of 20%,

it will correspond to a FPR of 6.10�3. The fact that the

methods tend to disagree might seem like a drawback,

but it is in fact advantageous, because they tend to

agree more on true positives than on false positives.

Thus, by using all four methods together, we obtained

FDRs between 0% and 40%, which are by far more

acceptable.

Perspectives and conclusion

The results of our study pointed out two main direc-

tions in which statistical genomic studies should direct

attention. First, we need more general and robust likeli-

hood models that would be flexible enough to accom-

modate for strong departures from classical models.

LFMM is an attempt in this direction, because its likeli-

hood does not depend on a particular population model

(Frichot et al. 2013).

Second, we need methods better adapted to polygenic

selection scenarios. The q-value framework allows to

control for false discovery rate (Storey & Tibshirani

2003; Storey et al. 2004), which allows for test statistics

that balance power and false-positive rate. Another

direction would be to develop a test that is suitable for

polygenic selection. The difficulty in this case is that it

would require to infer the genetic architecture of the

trait(s) under selection, a very difficult task especially in

the absence of any phenotypic data.

Because polygenic selection and complex spatial pop-

ulation structures are likely to be quite common in the

wild, it is important to tackle these two issues in order

to develop reliable genome scan methods that can be

applied to new NGS data from nonmodel species.
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